1分快3下载 - 1分快3必赚方案
1分快3官网2024-03-15

1分快3下载

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

张震将军的抗战岁月******

  2015年9月3日,是中国人民抗日战争胜利纪念日。就在这一天,中央军委原副主席、世界反法西斯战争的老战士、在抗日战争中功勋卓著的张震将军永远离开了我们,享年101岁。张震16岁参加红军,南征北战,戎马一生,继新中国首次授衔被授予中将军衔后,1988年9月我国再度恢复军衔制时被授予上将军衔,也是177名共和国中将中最后离开我们的一位。全面抗战爆发后,张震先后担任八路军总部参谋、新四军游击支队参谋长、八路军第4纵队参谋长、新四军第4师兼淮北军区参谋长等职,协助彭雪枫、邓子恢等开辟战场、指挥作战,为民族独立和人民解放事业作出重要贡献,是我军最优秀的参谋长之一。

  去太原做秘密联络工作

  1937年7月的一个晚上,在抗大学习的张震突然接到上级安排他去中央组织部报到的通知,要求离校时不能带有红军字样的东西。张震原以为会马上奔赴抗日前线,没想到等待他的却是另一项任务——去太原做秘密联络工作。原来是彭雪枫“点将”,要张震与自己同往山西阎锡山处开展统一战线工作。第二天,张震随彭雪枫离开延安。到太原后,张震化名“中天”,住进新满城街30号“彭公馆”。

  8月1日,中央指示彭雪枫等同志,红军即将改编,并准备入晋对日作战,要尽快成立太原办事处。10日,毛泽东电令太原办事处立即开设,以彭雪枫为主任。25日,中国工农红军主力正式改编为八路军。此时办事处的主要任务是:与第二战区司令长官、太原绥靖公署主任阎锡山交涉并商定八路军入晋的路线及开进方法;入晋后部队活动地区的划分;作战原则和指挥关系,以及后勤补充计划等。在彭雪枫、张震等人的共同努力下,经过多次交涉,终于促成阎锡山方面同意八路军由陕西韩城东渡黄河,在山西侯马上火车到大同集中,然后转赴察哈尔对日军作战。此外,还同意在太原、代县等地为八路军补充武器、弹药、被服等军需物资。

  八路军主力部队向山西进发后,办事处的工作越来越忙,人员也增加了不少。原本空间就不大的新满城街30号难以满足大家居住和工作的需要。为了找到一个合适的办公地点,张震跑遍太原城,最终找到原成成中学的校舍租了下来。8月30日,八路军驻晋办事处在这里正式挂牌。张震以八路军总部少校参谋的身份,负责联络、接待工作,并兼任办事处总务科科长。此后,张震在彭雪枫的领导下与阎锡山部广交朋友,积极开展抗日民族统一战线工作,出色地完成了上级赋予的任务。

  打响新四军游击支队抗战第一枪

  1938年2月,张震奉命率八路军驻晋办事处部分工作人员离开山西,前往河南确山的竹沟镇与彭雪枫会合。到达竹沟后,张震担任了中共河南省委军事部参谋长,协助整编新四军第4支队第8团。其间,他与彭雪枫“热情宴请”豫南土匪武装段可祥团。推杯换盏之际,张震只带一个班就顺利解除了“段团”七八百人的武装。

  9月,根据中央关于开展豫东敌后游击战争的指示精神,彭雪枫、张震等率部以新四军游击支队的名义,在竹沟誓师东征。10月11日,东征部队在西华城北的杜岗与豫东人民抗日游击第3支队和游击支队先遣大队胜利会师,合编为新四军游击支队,张震任参谋长。24日,整编后的部队东渡黄河,横跨淮太公路,于26日进至淮阳东北的窦楼一带宿营。自豫东沦陷,日寇杀烧抢掠,汉奸横行乡里,群众苦不堪言。游击支队到达窦楼后,当地群众欢欣鼓舞,热情招待。

  次日上午,整装待发的部队遭遇日军突袭。张震与彭雪枫紧急磋商,决定采取敌进我进、迂回包围、侧后突击的战术,各大队迅速占领有利地形,消灭来敌。张震亲率警卫连占领了窦楼西南角的坟地。战斗中,他身先士卒,手持机枪把迎面的日军打散。正准备再次射击时,一颗子弹飞来,穿过了张震的右腿。卫生员简单包扎后,张震继续指挥部队从正面阻击敌人。同时,彭雪枫率3大队向敌左侧猛烈突击,打得敌人阵脚大乱,狼狈逃窜。游击支队首战告捷,共毙日军10余人,缴获大量弹药物资。虽然战斗规模不大,但意义深远,不仅打击了日军的嚣张气焰,更锻炼了部队,提升了豫东军民的士气。

  开辟豫皖苏边抗日根据地

  1939年2月,新四军游击支队进驻永城书案店,召开了团以上干部会议。根据中央的指示,会议提出建立豫皖苏边抗日民主根据地的具体任务。4月,日军向永城地区反复“扫荡”,驻守永城的国民党军丧失抗战信心,撤向大后方。于是,张震与彭雪枫等迅速组织建立了中共永城县委和县政府。这是游击支队在敌后建立的首个抗日民主政权。按照由小到大、由一到多的发展构想,根据地逐渐扩展到萧县、夏邑、宿西、涡北等地,豫皖苏边抗日根据地初具规模,与陇海路北的八路军和大别山麓的新四军形成掎角之势。在此期间,张震积极开展统一战线工作,动员永城东北的地方武装鲁雨亭部加入新四军,并介绍鲁雨亭加入中国共产党。此后,这支部队成为我军在豫皖苏边区北部打击日伪军的一支重要力量。

  1939年9月,豫皖苏边区党委和新四军游击支队在涡阳县曹市集召开第一次党代会,讨论了豫皖苏边区的形势任务,作出大刀阔斧地开辟豫皖苏边抗日根据地的重要决定。此时,距游击支队誓师东征已过去了一年。在频繁战斗的间隙,张震坚持著文立言、笔耕不辍,相继撰写了《东征以后》《周年回忆》等文章。在《周年回忆》中,张震系统总结了开展敌后游击战的8点经验,在新四军内产生了广泛影响。

  由于豫皖苏边区地处敌、我、顽争夺的战略要地,在敌伪联合“扫荡”、顽军蓄意掀起反共高潮的情况下,根据地中心区域一度易手。为顾全抗战大局、保存力量,彭雪枫、张震等率部向皖东北地区转移,在洪泽湖畔战斗与发展。其间,他与彭雪枫指挥部队一举歼灭了向我进犯的顽军韩德勤部,生俘韩德勤以下官兵千余人。1944年8月,根据中央关于向河南敌后进军的指示,彭雪枫与张震又率部西进,恢复了豫皖苏边区。到抗日战争胜利时,这块由张震参与领导创建、具有重要战略地位的根据地,成为全国19个著名的敌后抗日根据地之一。(孙宇中、贾娟)

中国网客户端

国家重点新闻网站,9语种权威发布

1分快3地图